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Microphase separation of mixed A/B polymer brushes grafted onto a nanosphere with its radius com-
parable to the size of polymers is investigated by numerical implementation of the self-consistent
field theory. The idea is to embed the sphere within a larger cubic computational cell and use a
“masking” technique to treat the spherical boundary. The partial differential equations for the chain
propagator on the sphere can thus be readily solved with an efficient and high-order accurate pseu-
dospectral method involving fast Fourier transform on a cubic cell. This numerical technique can
circumvent the “pole problem” due to the use of a spherical coordinate system in conventional finite
difference or finite element grid. We systematically investigate the effect of the total grafting den-
sity, composition, chain length asymmetry between two grafted homopolymers as well as spherical
radius, i.e., substrate curvature on the formation of island structure with specific arrangement in a
regular lattice. A series of island structures with different island numbers representing specific struc-
ture symmetry ranging from 2 to 12 except for 11 are found, in contrast to conventional hexagonal
arrangement for polymer brushes on a planar substrate. Among these parameters, the spherical radius
plays a significant role in determining the type of island structures, i.e., the morphology formed on
the sphere. © 2011 American Institute of Physics. [doi:10.1063/1.3575180]

I. INTRODUCTION

Binary mixed polymer brushes refer to two immiscible
homopolymers with their ends covalently grafted onto a sub-
strate, which can only undergo microphase separation and de-
velop various nanoscale structures due to constraints of the
grafting points.1 According to the orientation of phase sep-
aration interface with respect to the substrate, two types of
phase separation are found, including the lateral phase separa-
tion forming ripple or dimple structures and the vertical phase
separation producing a layered structure. Meantime, micelle
structures also occur depending on the solvent selectivity.2–5

These accessible morphologies in mixed polymer brushes
can facilitate the tailoring of environment-responsive surface
properties. Therefore, mixed polymer brushes have found po-
tential applications such as colloidal stabilization, drug deliv-
ery, and smart films.1, 6, 7

Comprehensive theoretical understanding of the phase
behavior of binary mixed polymer brushes is essential for the
future development of new applications. A large number of
parameters, including chain lengths, grafting densities, selec-
tivity of the solvent, as well as the curvature of the grafting
substrate, can influence the phase separation morphology.
Marko and Witten were the first to theoretically examine the
equilibrium phase morphology of symmetric mixed planar
brushes and predicted a transition from miscible to ripple
or layered phases.8, 9 By using Monte Carlo simulations,
Lai obtained a layered structure with chains of the minority
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component being more stretched away from the substrate for
asymmetric binary mixed brushes.10 Soga et al. studied the
effect of solvent quality on the equilibrium structure of binary
mixed polymer brushes by using a coarse grained simulation
based on direct calculation of the Edwards Hamiltonian.11

Zhulina and Balazs used scaling arguments to construct a
phase diagram as a function of grafting density and incom-
patibility between the species for Y-shaped AB copolymers
grafted onto a flat substrate.5 During the past two decades,
self-consistent field theory (SCFT) has proven to be extremely
valuable in understanding the phase behavior of block copoly-
mers in bulk12 and under geometrical confinement.13 Müller
et al. investigated mixed polymer brushes and observed a
new structure, namely, the dimple phase with one component
forming clusters arranging on a quadratic or hexagonal lattice
into another component matrix.14, 15 Recently, Wang and
Müller investigated the influence of solvent quality on the
phase behavior of mixed A/B polymer brushes grafted onto
flat substrates using single-chain-in-mean-field simulations.16

However, so far most theoretical and experimental stud-
ies treat polymer brushes grafted on flat substrates and the
curvature of substrates is ignored.17, 18 Even for the work
by Zhao and Zhu,1, 18–20 the radius of the nanoparticles is
much larger than the size of the polymer chains thus limit-
ing these experiments to a pseudo flat-grafting case. In fact,
spherical brushes are not simply a curved version of planar
mixed brushes. Instead, the grafting substrate curvature is
also of importance to the phase behavior of mixed polymer
brushes, especially when the curvature radius of the substrate
is comparable to the size of polymers. On one hand, the chain
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segments have more available spaces away from the sphere
substrate and thus experience less steric packing constraint
as compared to a planar brush.21 This characteristic of mixed
polymer brushes grafted on a spherical substrate will lead to
a different scaling rule and different morphologies from the
case of flat substrate.21 On the other hand, the geometrical
confinement becomes prominent in inducing the formation of
new morphologies that are usually not present in bulk. For ex-
ample, block copolymers can spontaneously form helices and
stacked toroids inside cylindrical nanopores13 and a quadratic
arrangement in a small square well.22 Some novel morpholo-
gies such as cylinder knitting and golf balls were obtained
under confinement into spherical shell by using cell dynamics
simulations.23

In contrast to the application of the SCFT on flat-grafting
polymer brushes, the key to solve SCFT equations for
sphere-grafting polymer brushes is to compute partial differ-
ential equations for the chain propagator on the sphere. In a
previous work, we developed a spherical alternating-direction
implicit scheme to numerically solve SCFT in real-space
for investigating the self-assembly of block copolymers on
spherical surface.24 Subsequently, Chantawansri et al. numer-
ically solved SCFT to investigate the self-assembly of AB
diblock copolymers on a sphere by using spectral collocation
with a spherical harmonic basis.25 In particular, Roan first
reported the morphology of mixed polymer brushes grafted
onto a sphere substrate with its radius comparable to the
polymer size by using numerical implementation of SCFT
in traditional spherical coordinate system.17, 26 In addition to
ripple and layered structures, an island structure with various
island numbers was observed depending on the chain length,
grafting density, and so on. In general, the major problem
appearing during numerically solving diffusion equation on
a sphere is associated with the “pole problem” due to the
use of the spherical coordinate system in a finite difference
or finite element grid method. Recently, Vorselaars et al.27

solved SCFT onto the sphere with pseudospectral method, in
which the angular Laplacian is conveniently treated by taking
advantage of a software package SPHEREPACK involving
convenient analysis and synthesis of spherical-harmonics
functions to circumvent the “pole problem.” We have recently
numerically solved the diffusion equations in SCFT by em-
ploying a so-called “masking” technique for the self-assembly
of block copolymers on a substrate with arbitrary geometrical
shape.28, 29 In this paper, this unique technique is extended to
solve the SCFT on a sphere for mixed polymer brushes. The
idea is to embed the sphere within a larger cubic computa-
tional cell and use the masking technique to treat the spherical
boundary to circumvent the pole problem.30 In this way, the
use of simple Cartesian grids in a cubic computational cell
with periodic boundary conditions makes it possible to solve
the diffusion equations in SCFT on a sphere by utilizing the
efficient and highly accurate pseudospectral method involving
fast Fourier transform, as first developed by Tzeremes et al.31

II. THEORETICAL MODEL

We consider a system composed of nA homopolymer
A and nB homopolymer B with the length NA and NB,

respectively, uniformly grafted on a spherical substrate of
radius R in a nonselective solvent S. We attempt to em-
ploy the so-called masking technique originally proposed by
Khanna et al.30 to deal with confined block copolymers into
curved surface and subsequently by us for solving the block
copolymer confinement into complicated topographic surface
with SCFT.29 The masking technique deals with the spher-
ical boundary (which is not easy to address numerically)
with a smoothed boundary method. A so-called “cavity” field
φW(r) is introduced to obtain the smooth boundary condi-
tion of sphere, i.e., the wall density (0 ≤ φW(r) ≤ 1), which
is φW(r) = 0 in the polymer area (outside the sphere) and
smoothly decays to φW(r) = 1 out of the polymer area (inside
the sphere). Polymer brushes are expelled from the spherical
boundary through the imposition of a modified incompress-
ibility constraint φW(r) + φA(r) + φB(r) + φS(r) = 1.0. r is
a positional vector outside the sphere with its original point
fixed at the center of the sphere. The choice of φW(r) deter-
mines the geometry of the sphere and here we use a hyper-
bolic tangent functional form as a smooth boundary with very
sharp transition interface from values 0 to 1:

φW(r) = 1

2

{
1 − tanh

[
m

t

(
d(r) − T

2

)]}
, (1)

where T represents the range of wall interactions. d(r) is the
shortest distance of the position r outside the sphere from
the sphere substrate, i.e., d(r) = |r| − R, (|r| ≥ R), where R
is the sphere radius. The values of points inside the sphere
are set to be 1 to make sure that the sphere is impenetrable,
i.e., φW(r) = 1 for |r| < R. m and t are factors used to de-
fine the transition region and to set the width of the transi-
tion region, respectively. t is the interfacial thickness of the
transition from wall to polymers, and the interface becomes
sharper with decreasing t or increasing m, which is suitable
for describing a quite small interfacial thickness. For exam-
ple, the value of m is chosen as 4 ≤ m ≤ 6 to ensure that the
value of tanh can infinitely approach values of 1 and −1 as a
function of positional vector r. In this work, the wall tran-
sition region is defined to begin at φW(r) = 0.99 and end
at φW(r) = 0.01 and thus m should be m = ln(99) ≈ 4.60.
On the one hand, the value of T should be chosen larger
than the transition thickness t to prevent the overlap of the
interfaces; on the other hand, we do not expect the specific
value of T to affect the results. Therefore T should be se-
lected smaller than Rg(i.e., T ≈ 0.5Rg in this work). We as-
sume that the all polymer segments have the same volume
ν0 = ρ−1

0 = 1, equal to that of the solvent molecules and the
same statistical Kuhn segment length set as a length unit
b = 1. Throughout the paper, all lengths are scaled by the
Kuhn segment length b. The volume fraction of the i compo-
nent is fi = ni Ni/

∑
i=A,B,S ni Ni (i = A,B,S, and NS = 1),

where ni is the chain number of the i component. The poly-
mer chain is parameterized with a continuous path variable s
(in units of reference chain length N = 30). The ratio of rel-
ative chain length for polymers A and B are αA = NA/N and
αB = NB/N , respectively. The grafting density of polymers
can be calculated from σi = ni/4π R2 (i = A or B).

SCFT has been well developed and the interested
reader is referred to a previous review.32 Here, we only
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summarize our SCFT equations, which are identical to those
used in our previous work.28, 29 For simplicity we consider
polymers grafted onto enthalpically neutral spherical sub-
strate by setting χAW = 0, χBW = 0, and χSW = 0. The SCFT
equations are given

wA(r) = χAB NφB(r) + χAS NφS(r)

+χAW NφW(r) + ξ (r), (2)

wB(r) = χAB NφA(r) + χBS NφS(r)

+χBW NφW(r) + ξ (r), (3)

wS(r) = χAS NφA(r) + χBS NφB(r)

+χSW NφW(r) + ξ (r), (4)

φA(r) = fA

QAαA

∫ αA

0
dsqA(r, s)q+

A (r, αA − s), (5)

φB(r) = fB

QBαB

∫ αB

0
dsqB(r, s)q+

B (r, αB − s), (6)

φS(r) = fS

QS
exp(−wS(r)/N ), (7)

where φA(r), φB(r), and φS(r) are the volume fraction of A
and B segments and solvent molecules at position r, respec-
tively; wA(r), wB(r), and wS(r) are conjugated interaction
potentials; ξ (r) is the Lagrange multiplier that allows us to
enforce the incompressibility constraint. χαβ is the Flory–
Huggins interaction parameters between different species α

and β. In Eqs. (5) and (6), the propagator qi (r, s) (i = A or B)
corresponds to the probability of finding a partial copolymer
chain of length s that starts from s = 0 anywhere in the sys-
tem and ends at position r, where the chain contour length
s ∈ [0, 1] is scaled by N . It satisfies a diffusionlike equation

∂qi (r, s)

∂s
= Nb2

6
∇2qi (r, s) − wi (r)qi (r, s) (i = A or B),

(8)

qi (r, s) starts from the free end with the initial condition

qi (r, 0) =
{

1, |r| > R

0, |r| ≤ R
. (9)

Similarly, the other segment probability distribution
function q+

i (r, s) corresponds to the probability for a partial
copolymer chain of length s that starts from the grafting end
of the polymer chain and ends at position r. q+

i (r, s) satisfies
the same diffusionlike equation as Eq. (8) but with a different
initial condition for uniform grafting:

q+
i (r, 0) =

⎧⎨
⎩

σi

qi (r, αi )
, |r| ∈ (R, R + b)

0, |r| /∈ (R, R + b)
. (10)

Therefore, the chains are grafted a quite small distance of
Kuhn segment length b above the spherical substrate and thus
the grafting area is A = 4π (R + b)2 for improving numeri-
cal stability, similar to the treatment by Kim and Matsen.33

The boundary conditions supplementing Eqs. (9) and (10) are
qi (r, s) = 0 and q+

i (r, s) = 0 for |r| ≤ R. The single chain
partition function for homopolymers A and B, as well as the
solvent can be calculated from the following equations:

QA = 1

V

∫
drq+

A (r, αA), QB = 1

V

∫
drq+

B (r, αB),

QS = 1

V

∫
dr exp[−wS(r)/N ], (11)

where V represents the effective volume occupied by poly-
mers and solvent: V = ∫

dr (1 − φW(r)). Finally the free
energy of the system is given as

F

kB T
= ρ0

N

∫
d3r

{
1

2

∑
i, j=A,B,S,W
i �= j

χi j Nφi (r)φ j (r)

−
∑

i=A,B,S

wi (r)φi (r) − ξ (r)

(
1 −

∑
i=A,B,S,W

φi (r)

)}

− (nA ln QA + nB ln QB + nS ln QS). (12)

By taking advantage of the above described masking
technique, the diffusion equation (8) of chain propagators on
the sphere is readily solved in a cubic box subjected to peri-
odic boundary conditions with the pseudo-spectral method:31

Bueno-Orovio et al.34 also proposed the same numerical
method to solve partial differential equations in irregular do-
mains with pseudo-spectral method by embedding the domain
into a regular box and encoding the boundary conditions with
a smoothing term. The main advantage of this method is its
ability to treat domains of arbitrary geometrical shape in con-
trast to finite-difference and finite elements methods.

qi (r, s + ds) = exp

[
−ds

2
wi (r)

]
exp

[
Nb2

6
ds∇2

]

× exp

[
−ds

2
wi (r)

]
qi (r, s). (13)

Compared to the real-space solution of the diffusion
equation, the pseudo-spectral method, Eq. (13), involving
FFTs is more efficient and accurate.31 The simulations are car-
ried out on a three-dimensional space with Lx × Ly × Lz lat-
tice, with the spatial discretization as �x = �y = �z = 0.25
to smooth the hard spherical substrate and the chain length
is discretized as �s = 1/30. We note that computational cell
size (Lx , Ly, and Lz) is chosen to be large enough such that
the total polymer density φA(r) + φB(r) ≤ 10−5 at the bound-
ary of computational cell in all cases to release the influence
of calculation cell size. Furthermore, to obtain the final stable
structure we compared the minimization of the free energy
repeated at least three times by using different random initial
states of fields wi (r) and different random numbers to guaran-
tee that the structure is not occasionally observed. We should
note that more accurate and higher order method such as
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fourth-order backward differentiation formula together with
Richardson extrapolation35 to solve the diffusion Eq. (8) and
spectral method by Matsen and Schick12 should be used to
discern the neighboring morphologies with small free energy
difference, especially for quite strongly segregated system.

III. RESULTS AND DISCUSSION

As mentioned above, the parameter space influencing the
phase behavior of mixed polymer brushes is large and in-
cludes the total grafting density, ratio of grafting densities of
two mixed homopolymers, composition, chain length asym-
metry between two grafted homopolymers, spherical radius
(i.e., substrate curvature), interaction strength between two
polymers, solvent selectivity, as well as surface energy of the
spherical substrate. To reduce the parameter space, we as-
sume that there is no selectivity of solvent and the spherical
substrate to the two polymer species by setting χAS N = 0,
χSW N = 0, χBS N = 0, χAW N = 0, and χBW N = 0 and the
interaction between two polymer species is set as χAB N = 40
throughout the article. Furthermore we set a common poly-
mer size of mean-square end-to-end distance

√
Nb is compa-

rable to the nanoparticle radius R, i.e.,
√

Nb ≈ R. We also
assume equal segment sizes as a length unit (bA = bB = b =
1) for simplicity. The three main types of structures after
phase separation have been found in mixed polymer brushes
grafted onto a flat substrate including layered, ripple, and
dimple structures.14, 15 For the case of a spherical substrate,
these structures are so far also observed by Roan with SCFT
simulations.17, 26 Different from a hexagonal lattice formed in
mixed polymer brushes grafted on a flat substrate,15 the dim-
ple structures will show other regular arrangements on the
spherical substrate with a finite number of isolated domains
in a high symmetry dispersed in the matrix of the majority

component.17 Here, we call the isolated domain in the dimple
structure as an island and mainly investigate the dependence
of these island structures on the composition, chain length
asymmetry as well as the spherical radius, i.e., the curvature
of spherical substrate. Different island morphologies are la-
beled by the island number n formed by the i species, i.e.,
Zn/ i , i = A or B.

Figure 1 illustrates the different morphologies of mixed
polymer brushes for σtotal = 0.6 at various ratio of grafting
density σB/σA. It is found that the morphology ranges from
a ripple structure in Fig. 1(a), to island structures Z10/A in
Fig. 1(b) and Z12/A in Fig. 1(c) and finally to a layered struc-
ture in Fig. 1(d) with the increase of σB/σA. The equal graft-
ing density of two polymers (σB/σA = 1) brings about a rip-
ple structure in Fig. 1(a), where the same kind of polymer
chains aggregate into a continuous domain alternatively wrap-
ping around the sphere together with the other species. This
is similar to the self-assembled morphology of symmetric AB
diblock copolymers confined on the sphere surface with the
SCFT simulations.24, 25 In particular, from the cross section
view of Fig. 1(a), the lamellae stand up, which is similar but
not identical to the lamellae perpendicular to the substrate for
the case of planar mixed brush. Due to the spherical geom-
etry, purely perpendicular lamellae cannot exist because it is
impossible for them to be always parallel to each other and
stretching away from the grafting surface.

With an increase in the grafting density ratio such as
σB/σA = 2 and σB/σA = 3 an island structure occurs with
the minority component clustering into isolated domains dis-
persed in the matrix of the majority components. Polymer
brush chains can explore more space to relax the packing
constraint as stretching away from the sphere substrate,21

which is more pronounced for small spheres (high curva-
ture). In this case, the island will render itself into morphology

FIG. 1. Typical morphologies of mixed polymer brushes with R = 4, NA = NB = 20, and σtotal = 0.6. (a) Ripple structure with σB/σA = 1; (b) Z10/A island
structure with σB/σA = 2; (c) Z12/A island structure with σB/σA = 3; (d) layered structure with σB/σA = 5. The first and second rows are only A and B
blocks, respectively, and the bottom row is isosurface morphologies of mixed polymer brush, but (a) and (d) are the cross section view through a diameter. The
two polymer species A and B are represented by green color for φA ≥ fA and blue color for φB ≥ fB , respectively, with a red sphere inside.
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similar to a truncated circular cone with a spherical cap and
the top (small) base close to the spherical substrate, rather
than a perfect cylinder in bulk or in the case of planar brush.
Compared with the dimple structures reported by Müller
where the clusters arrange on a quadratic (checkerboard struc-
ture) or hexagonal lattice on a flat substrate,15 these clusters
in our work formed by mixed polymer brushes are arranged in
a highly symmetric pattern on the sphere substrate. It can be
clearly discerned from Fig. 1 that Z10/A island is a four-fold
structure with the D4d symmetry group and Z12/A island is a
five-fold structure with the D5d symmetry group. Meanwhile,
it is interesting to note that if each island is considered as a
point in space, these vertexes consists of a polyhedron, sim-
ilar to the case of densely packing of microspheres.36 They
show a high similarity in not only the number of vertexes but
also the symmetry of the polyhedrons. Therefore, the Z10 and
Z12 structure can be considered as a gyroelongated square
bipyramid and an icosahedron, respectively. These structures
with specific symmetry also remind similar packing effects
in an old Thomson problem of electrons distribution on the
sphere.37 It should be noted that in the Z10 structure there
may exist a disparity in the brush height. It is speculated that
the brush height of islands along the four-fold rotation axis
is higher than that of other islands. This brush height dispar-
ity results in an extra conformation loss of chains as com-
pared to the case of the Z12 structure, which was first reported
by Roan for mixed polymer brush on a sphere by setting
σtotal = 0.9 and σB/σA = 2 in the case of symmetric chain
length.17

When the ratio of grafting density is large enough such
as σB/σA = 5, the system forms a layered structure where
the minority chains are extended away leaving the majority
components close to the grafting substrate. This is also re-
ported by Roan in a spherical grafting case17 and Lai in a
flat grafting case,10 respectively. This kind of layered struc-
ture with the minority chains stretching out to form the outer
layer is different in nature from the well-known perpendicular
layered structure with the outer layer formed by long chains
as a result of chain length disparity in the following discus-
sion. We should note that the concentration fluctuations in the
present SCFT are not taken into account due to calculation in-
tractability, which deviates from the mean-field assumptions
especially close to the critical point. This layered structure
occurring at σB/σA = 5 will be more accurately examined by
including concentration fluctuations in the SCFT in the future.

A. Symmetric chain length

First we examine the simple case with symmetric chain
length NA = NB = 20. Figure 2 presents phase diagram of
island structures as a function of the grafting density ratio,
σB/σA, and the total grafting density, σtotal. For the case of
symmetric chain length, we only need to present half of the
diagram where the grafting density of B is larger than that
of the A component due to mirror symmetry with respect to
σB/σA = 1. It is found that two main kinds of island structures
emerge on the phase diagram with the number of islands being
10 and 12. The Z10/A structure occurs at a low total grafting

FIG. 2. Phase diagram of mixed polymer brushes as a function of total graft-
ing density, σtotal and grafting density ratio of two species, σB/σA with sym-
metric chain length NA = NB = 20 on a sphere with R = 4. Lines are only
a guide to the eye.

density and a grafting density ratio σB/σA, while the Z12/A
structure is found at a high total grafting density and a graft-
ing density ratio σB/σA. Furthermore, the Z12/A structure oc-
cupies the majority of the phase diagram, which continually
expands with the increase of the total grafting density. When
the grafting density is relatively high (σtotal = 0.9) and the ra-
tio σB/σA is small (σB/σA = 1.5), some neighboring islands
tend to connect with each other. We suppose that this mor-
phology seems to be an intermediate between the ripple and
dimple structures. Wang and Müller16 also observed a rather
gradual crossover between the two kinds of structures at in-
termediate composition of mixed polymer brushes on a flat
substrate. Certain structures such as the Z11 island may be so
energetically unfavorable that they are not found for all val-
ues of the grafting density by fixing the chain length at 20 in
Fig. 2.

The balance of the stretching energy of chains and in-
terfacial energy from microphase separation determines the
island structure. On one hand, as the end of each polymer is
confined at the spherical substrate, an increase of the domain
size means that some chains need to stretch far away from
their grafting points, leading to a stretching energy penalty.
Therefore, the system favors small domains, which corre-
spond to the structure with more island numbers. On the other
hand, structures with more islands share the matrix with a
larger total interfacial area, which increases the interfacial en-
ergy. This effect will be particularly pronounced when the
grafting density ratio of two polymer species is low, e.g.,
σB/σA = 1.5, which corresponds to the phase region with
small numbers of islands (the Z10 structure). In this case, in-
terfacial energy dominates while the stretching energy is less
important.

Figure 3 presents the radial averaged density profiles
of two components as a function of the distance d(r) from
the grafting sphere substrate at a constant grafting density
ratio σB/σA = 2 for different total grafting densities. From
Fig. 3(a), increasing the total grafting density has only a slight
influence on the shape of the density profiles, which exhibit
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FIG. 3. The average density profiles along the radial direction for mixed A/B brushes. (a) Constant grafting density ratio, σB/σA = 2, and varying the total
grafting density. (c) Constant total grafting density, σtotal = 0.6, and varying grafting density ratio (composition). (b) and (d) are the locally amplified graphs of
(a) and (c), respectively.

the typical parabolic curve for dense polymer brushes in a
good solvent. A minor difference lies in the local polymer
density and the height of the brush that increases with the in-
crease of the total grafting density. As shown in Figs. 3(a)
and 3(b), polymer chains can extend outward farther with the
increasing total grafting density, and the height of majority
B domains is larger than that of minority A islands due to a
nonselective solvent. This observation is consistent with the
case of mixed polymer brushes on a flat substrate by Wang
and Müller.16 In Fig. 3(c), the density profile of the minority
component, however, becomes gradually different from the
parabolic shape with the increase of the grafting density ra-
tio. Particularly when σB/σA = 4, the profile of the minority
is rather flat, which was also proved in the work of Lai us-
ing Monte Carlo simulation.10 It should be noted that, how-
ever, the density of polymers in majority B domains is al-
ways larger than that in minority A domains even at the outer
layer as shown in Fig. 3(d). Therefore, the high disparity of
the grafting density ratio will also result in the transformation
of the morphology from the dimple phase to a layered phase
even in a nonselective solvent.

B. Asymmetric chain length

It is known that the variation in chain length changes not
only the brush height but also the lateral size of grafted coils
for one-component brushes. For mixed polymer brushes the
composition (volume fraction) of polymer species changes
with the chain length at fixed grafting density ratio and thus
determines the morphology. Therefore, new structures may
be obtained by changing chain length disparity for mixed

polymer brushes. In particular, layered structures that are not
found under symmetric chain length condition can be ob-
tained when the chain lengths of two polymer species are
in relatively large disparity. As shown in Fig. 4, a variety of
structures are obtained by increasing the chain length of the
B polymer and fixing the A chain length as NA = 20. The
grafting density ratio and the total grafting density are set as
σB/σA = 0.5 and σtotal = 0.5, respectively, to ensure the for-
mation of island structures. The layered structures as shown
in Figs. 4(a) and 4(e) are observed when the asymmetry of
two chain lengths is so large that short chains mainly col-
lapse at the bottom layer and long chains are highly stretched
and spread out to form the outer layer.16 Three kinds of is-
land structures are found with the island number being 9, 10,
and 12, respectively, when the disparity of the two chain
lengths is low. Moreover, the results show that the island
structure formed by the B polymer can tolerate small chain
length asymmetries at the condition of σB/σA = 0.5.

The Z9/B structure in Fig. 4(b) appears to be a triaug-
mented triangular prism in the D3h symmetric group, which
is not found in the symmetric chain length condition. Com-
pared with the Z10 structure, the Z9 structure has a lower
symmetry due to the lack of one island in the direction of the
four-fold rotation axis. In Fig. 4(b), the island size described
by the contour length of two intersecting surfaces (spherical
island and matrix) becomes quite small and is almost buried
in the A matrix. As the chain length shifts the volume frac-
tion of polymer species, continuously increasing NB induces
island structures Z10 in Fig. 4(c) and Z12 in Fig. 4(d) with a
much larger island size. It can be easily inferred that with a
further increase in the B length, the chain length disparity en-

Downloaded 06 Sep 2011 to 61.129.42.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134903-7 Mixed polymer brushes grafted onto a sphere J. Chem. Phys. 134, 134903 (2011)

FIG. 4. The microstructures with the increasing chain length of polymer B while fixed NA = 20 for R = 4, σB/σA = 0.5 and σtotal = 0.5. (a) NB = 10;
(b) NB = 15; (c) NB = 20; (d) NB = 25 and (e) NB = 30. The first and second rows are only A and B blocks, respectively, and the bottom row< [(a) is the
cross section view through a diameter] is isosurface morphologies of mixed polymer brush. The two polymer species A and B are represented by green color
for φA ≥ fA and blue color for φB ≥ fB, respectively, with a red sphere inside.

larges and the island size formed by the B polymer becomes
so large that nearby islands overlap with each other to en-
close the short chains, shown in Fig. 4(e). In fact, this struc-
ture may be regarded as a layered structure rather than a Z12
island structure. This morphology transition was also exper-
imentally observed by Jiang et al. who studied the morphol-
ogy transition of PtBA/PS mixed polymer brush by changing
the chain length disparity.38 Their results also confirm that the
nanodomain size increases with the increase in the molecular
weight of PS.

Figure 5(a) presents the diagram of island structures for
the mixed polymer brush as a function of the total grafting
density and the chain length of the polymer B NB. Other pa-
rameters are the same as in Fig. 4. Compared with the sym-
metric chain length case, a new Z9 island structure occurs al-
though only occupying a small region of the phase diagram.
Moreover, the Z12 structure with higher symmetry occupies
a larger area in the phase diagram. It is interesting to note that
the system seems to undergo lateral microphase separation at
high enough total grafting density although the large dispar-
ity in chain length favors a layered structure. For example, in

Fig. 5(b), when σtotal = 0.8 and NB = 10, the lateral separa-
tion at the bottom layer still takes place in a way where short
short B chains tend to aggregate into isolated microdomains
covered by long A chains forming the outer layer, denoted
as LBA. Wang and Müller16 also reported that mixed polymer
brushes on flat substrates can form two-layered structure with
laterally phase-separated bottom layer and a top layer only
containing the longer polymer species in the case of large
chain-length disparity and nearly nonselective solvent. Fur-
thermore, the LAB with outer layer formed by long B chains
occupies smaller area of the phase diagram compared with
LBA due to asymmetric grafting density ratio σB/σA = 0.5

In particular, the brush height scaling relationship with
the grafting density should be different between the curved
and planar brushes. For homopolymer brushes grafted onto
a sphere, the scaling relationship in semidilute polymer
brushes (SDPB) is h ∝ (σ ∗1/3)3/5, while h ∝ (σ ∗1/2)x , where
3/5 < x ≤ 1 in the concentrated polymer brush, where σ ∗

is the reduced grafting density σ ∗ = σb2.21 In our work,
the brush height of the i species is calculated as hi

= ∫ L
0 φi (r)rdr/

∫ L
0 φi (r)dr − R,39 where L is a vector start-

FIG. 5. (a) Phase diagram of mixed polymer brushes as a function of total grafting density σtotal and chain length NB with NA = 20, R = 4, and σB/σA = 0.5.
Lines are only a guide to the eye; (b) A typical layered structure in cut view with lateral phase separation at the bottom layer at σtotal = 0.8 and NB = 10.
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FIG. 6. Effect of the total grafting density σtotal on the brush height of islands forming by A polymer hA with NB = 20, and R = 4 on the logarithm coordinates.
(a) symmetric chain length NA = 20; (b) asymmetric chain length with varying NA, σB/σA = 2.

ing from the sphere center to the boundary of the calculated
cell. Figure 6 shows the effect of the total grafting density
on the brush height with respect to the island under sym-
metric and asymmetric chain length condition on the double
logarithm coordinates, respectively. It is found that the brush
height increases with the total grafting density and does show
the scaling relationship with the total grafting density. The fit-
ting scaling index lies between 0.24 and 0.26 for symmetric
chain length and 0.14–0.24 for asymmetric chain length, all
belonging to the SDPB regime.

C. Variation of sphere radius

Since the phase separation of mixed polymer brushes
occurs in the confined space which is mainly determined
by the sphere radius, it is expected that the number of is-
lands, namely, the structure symmetry can be controlled by
changing the substrate’s curvature. In fact, in the above dis-
cussions, only a few varieties of island structures emerge at
a fixed spherical radius R = 4. Moreover, neither the total

grafting density nor the chain length disparity dramatically
influences the types of island structures. Figure 7 illustrates
a variety of structures with the island number ranging from
2 to 8 by decreasing the curvature of the spherical substrate.
The Z2/A island is a dumb-bell-like structure with a D∞ sym-
metry; the Z3/A islands consist of a planar equilateral triangle
with a D3h symmetry while the Z4/A islands consist of a tetra-
hedron with a Td symmetry. The Z5, Z6, and Z7 island struc-
tures appear to be a triangular bipyramid, a regular octahedron
and a pentagonal bipyramid with D3h , Oh , and D5h symmetry,
respectively. The Z8 island structure appears to be a square
antiprism. More interestingly, these island structures are all in
agreement with morphologies of densely packing of micro-
spheres with specific numbers.36 The ordering mechanism of
our system, however, involves both the packing effect and the
microphase separation resulting from grafting points. These
structures with specific symmetry are also similar to the self-
assembled patterns of block copolymers on the sphere,23, 25

reflecting the Thomson problem of electrons distribution on a
sphere.37

FIG. 7. Typical structures with island number ranging from 2 to 8 at σB/σA = 2. (a) (R, σtotal, NA/NB) = (0.5, 1.0, 20/20); (b) (R, σtotal, NA/NB)
= (1.0, 0.8, 20/20); (c) (R, σtotal, NA/NB) = (2.0, 1.0, 30/30); (d) (R, σtotal, NA/NB) = (2.0, 0.7, 20/20); (e) (R, σtotal, NA/NB) = (2.0, 0.8, 20/20); (f)
(R, σtotal, NA/NB) = (3.0, 0.6, 20/20) and (g) (R, σtotal, NA/NB) = (4.0, 0.6, 25/30). The first and second rows are only A and B blocks, respectively, and
the bottom row is isosurface morphologies of mixed polymer brush. The two polymer species A and B are represented by green color for φA ≥ fA and blue
color for φB ≥ fB , respectively, with a red sphere inside.
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FIG. 8. Phase diagram of mixed polymer brushes with different spherical
radius. NA = 20, NB = 20, and σB/σA = 2. Lines are only a guide to the
eye.

This is further demonstrated in the phase diagram of
Fig. 8 in terms of the total grafting density and the spheri-
cal radius at NA = 20, NB = 20, and σB/σA = 2. It can be
clearly seen from Fig. 8 that island numbers decrease with
the decrease of spherical radius. The symmetry of the island
structure will change with the decrease of island number. The
reason is that a smaller spherical radius makes it easier for
more polymer chains of the same kind to aggregate and the is-
land number must then decrease. Z12 island structure that can
be easily obtained at R = 4 will never be observed at R = 1.
The Z2 island structure cannot be obtained at R = 4, either.
Increasing the sphere curvature will induce the space avail-
able to phase separation to decrease and thus amplify the con-
finement effect that dramatically influenced the island number
of the structures. Figure 9 further illustrates the effect of the
curvature of the grafting substrate R−1 on the brush height
formed by A minority islands hA. As the curvature of the
grafting substrate increases, the space available to phase sep-
aration will decrease and thus amplify the confinement effect
resulting in the decrease of the brush height.

FIG. 9. Effect of the curvature of the grafting substrate R−1 on the brush
height with NA = NB = 20, σB/σA = 2, and σtotal = 0.7.

IV. CONCLUSIONS

Using SCFT combined with the masking technique, we
systematically studied morphologies, in a nonselective sol-
vent, of mixed polymer brushes on a hard sphere, whose ra-
dius is comparable to polymer size of mean-square end-to-end
distance

√
Nb. Much attention is focused on the dependence

of the island structures on the chain length asymmetry and the
curvature of the sphere as a function of total grafting density
and the grafting density ratio of two polymer species (com-
position). Since the mixed brushes are confined around the
nanosphere, the arrangement of the islands is different from
that in the flat-grafting case with one component arranging
in a quadratic or hexagonal lattice. Though different with the
number of islands, each island structure arranges in a high
symmetry way. A series of island structures are obtained with
different island numbers ranging from 2 to 12 by tuning these
parameters noted above. The Z11 island structure is hardly
observed. It is interesting that these island structures are com-
parable in symmetry to the morphologies of dense packing of
microspheres in small clusters and will be useful for nanopar-
ticles with different patching points to self-assemble into new
materials.

The geometrical characteristics, especially the curvature
of the grafted substrate, determines the morphology of the
system with a specific number of islands arranging in a high
symmetry on the sphere. Since the island number increases
with increasing the spherical radius, it is anticipated that is-
land structures with number more than 12 can also be ob-
tained at a larger sphere. Increasing the grafting density ra-
tio of two polymer species encourages the formation of island
structures with higher island numbers as for the case of sym-
metric chain length. At a larger grafting density ratio mixed
polymer brushes tend to form a layered structure with chains
of the minority component stretching away from the substrate
to form a thin outer layer. The total grafting density, however,
has little influence on the change of the island number.
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